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Abstract 
Efficiently operating a rover on the surface of Mars is chal-
lenging. Two factors combine to make this job particularly 
difficult: 1) communication opportunities are limited, 2) cer-
tain aspects of rover performance are difficult to predict.  
With limited communications, the rover must be given in-
structions on what to do for one or more Martian days at a 
time. In addition, the duration of many rover activities can be 
hard to predict, which leads to unpredictable energy use.  Tra-
ditionally, conservatism is used to keep the rover safe and 
healthy.  This approach, however can lead to a measurable 
loss in rover productivity.  To regain some of this productiv-
ity, the Mars 2020 mission is prototyping the use of onboard 
scheduling software.  The primary objective of this software 
is to identify and utilize opportunities that arise when actual 
rover performance is more efficient than the original, con-
servative prediction. 

Introduction 
In this paper, we introduce our work on an onboard sched-
uler prototype for the Mars 2020 (M2020) rover.  We begin 
with a mission background, and introduce terminology.  We 
then introduce the onboard scheduler, and provide some 
driving requirements.  We discuss the data provided by the 
ground that the scheduler uses as input.  We discuss the 
timeline library code that is used as a foundation for the 
scheduler, and discuss its application to this mission.  We 
then discuss our algorithmic approach to the scheduler.  We 
describe our tool chain that assists with the prototyping 
work. Finally, related work is discussed.  Our goal in this 
paper is to explore the unique scheduling needs of a Mars 
rover, and to show our current thinking as we continue our 
prototyping effort. 
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Mars 2020 Background   

Terminology 
We first introduce terminology that will be used throughout 
the paper.  Internal to the M2020 team, we have named our 
prototype the Onboard Planner (OBP).  Using AI commu-
nity terminology, the problem addressed by OBP would be 
more accurately be described as scheduling. 
 A sequence is a file containing a list of time-ordered 
spacecraft commands. This was used on Mars Science La-
boratory mission (MSL) [Grotzinger et al., 2012] and will 
be used on M2020.  A sequence is run in its own task.  
M2020 will have multiple sequence engine tasks, each of 
which can run its own sequence. 
 The length of a solar day on Mars is about 24 hours and 
40 minutes and is often called a sol.  During the Martian 
night, and at other times, we shut down rovers to recharge.  
We call this a sleep. 
 Before using an actuator, we often need to heat up the ac-
tuator so that it is warm enough to safely use.  We call this 
a preheat. 
 A comm window is fixed time interval during which the 
rover communicates with either the ground or an orbiter.  
 Handover is defined as the point in time at which we 
switch from one schedule file to the next.  It is typically to-
wards the end of a plan. 

Mission Background  
The Mars 2020 rover will not only seek signs of habitable 
conditions on Mars in the ancient past, but will also search 
for signs of past microbial life.  Additional mission goals 
include characterizing the climate and geology of Mars.  The 
rover includes a drill that can collect core samples from 
Martian rock and soil, and set the samples aside in a “cache” 
on the surface of Mars.  A future mission could potentially 

 



return these samples to Earth.   The payload includes 7 sci-
ence instruments. 

The mission goes successively through 3 main phases, 
each of which uses a subset of the hardware. During the 
cruise phase, the spacecraft travels from Earth to Mars. Dur-
ing cruise, trajectory correction maneuvers are performed, 
refining the trajectory. As the spacecraft nears Mars, the 
cruise stage hardware is discarded. Next is the Entry De-
scent and Landing (EDL) phase, which lands the rover on 
Mars. During this phase, a combination of guided entry, a 
parachute, powered descent, and finally a sky crane is used 
to deliver the rover safely to the Martian surface.  During 
the final phase, the surface phase, the Mars rover drives on 
the surface of Mars, performing scientific investigations 
with its suite of instruments.  The onboard scheduler will 
only be used during the surface phase. 
 Further information about the M2020 mission is available 
at https://mars.nasa.gov/mars2020/. 

Flight Computer 
M2020 must operate with limited onboard computing re-
sources, and OBP will be given only a fraction of these re-
sources.  M2020 uses a BAE Rad750 single board computer 
[Berger, 2001].   It contains 128 megabytes of volatile 
DRAM, and is run at 133 MHz.  The flight software is able 
to access 4 gigabytes of NAND non-volatile memory on a 
separate card.   

Flight Software 
The M2020 flight software runs on the VxWorks™ operat-
ing system, and is written in C.  The flight software is de-
composed into a number of modules, each of which runs in 
its own VxWorks™ task.  Each module typically communi-
cates with another module via inter-process communication 
(IPC).  IPC messages get put on a priority queue, and each 
priority can be individually enabled or disabled.  In most 
scenarios, a client will send an IPC message, wait for a reply 
IPC message, and then proceed. 

Heritage from MSL 
M2020 has high heritage from the MSL mission. While sci-
ence instruments are new, most of the hardware is inherited.  
In addition, significant portions of the M2020 flight soft-
ware are inherited or modified from MSL flight software.   
 We can also leverage experience and lessons learned dur-
ing the operations phase of MSL.  Some of these lessons, 
along with new M2020 requirements, provide the impetus 
for M2020’s onboard scheduler.  On MSL, often the process 
of creating sequences could take over 9 hours for the opera-
tions team.  M2020 seeks to get this time down to 5 hours.   
 Due to execution uncertainty, the MSL operations team 
had to insert margin for sequence duration estimates.  This 
resulted in wasted time and energy onboard.  Additionally, 

MSL could not take advantage of available onboard 
knowledge.  If a sequence finished early or failed, time was 
often wasted.  The details of these productivity challenges 
can be found in [Gaines et al., 2016]. 

Onboard Scheduler Overview 

Goals 
To increase the amount of time spent onboard performing 
useful activities, and to reduce the amount of time spent on 
the ground preparing spacecraft commands, the M2020 sys-
tems team requested creation of OBP.  The hope is that this 
will improve overall mission performance. 
 A goal of OBP is to take advantage of onboard knowledge 
that is not available to the ground ops team in a timely man-
ner.  For example, if an activity finishes early, and more en-
ergy is available, this is immediately known onboard.  Po-
tentially, OBP can take advantage of this knowledge by add-
ing in an extra science activity, filling in an otherwise un-
used gap in the schedule of activities.   
 A second goal is reducing the time spent by the operations 
team in creating commands and sequences. For example, 
M2020 requires that OBP generate wakeup and preheat ac-
tivities onboard.  This is in contrast to MSL, which required 
the operations team to create these activities on the ground. 

Usage Overview 
We now discuss the high-level data flow between the oper-
ations team and OBP.  Like MSL, M2020 will typically cre-
ate a set of activities for one to three Martian sols at a time. 
The ground operations team begins by creating a binary plan 
file containing all the potential activities that could run.  We 
anticipate this to include on the order of a few hundred ac-
tivities.  The plan file also describes onboard resources that 
each activity uses, and well as any constraints on or between 
activities.  Each activity is expected to specify on the order 
of ten resources and constraints. Our expectation is that 
ground tools generate plan files with higher level human in-
puts, and that much of the detail and data going into the plan 
file is generated automatically from drag and drop templates 
and ground data.  We discuss the contents of the plan file in 
greater detail later in this paper. 
 Once the plan file is uplinked to the spacecraft, it can be 
started via command.  From this point, OBP is responsible 
for deciding which activities from the plan file may run 
onboard. Running at a predetermined rate, OBP generates a 
valid schedule for the activities in the plan file.  Activities 
scheduled to start before the time of the next OBP cycle are 
dispatched for execution. 
 To generate the schedule, the OBP does the following. 
First, OBP examines the current spacecraft state, in terms of 
data volume, completed activity status, energy, and others.  



This state is used as a starting point and initial condition.  
Then, for each activity, OBP attempts to find a start time for 
the activity that does not violate any constraints.  The con-
straints may involve onboard state or parallelism limits, for 
example.  In looking for these valid start times, OBP must 
take into account the activity’s effect on onboard resources.  
Once the start time is found, OBP’s prediction for all re-
sources is updated.  In this way, OBP is creating a predic-
tion, over time, of the values of various onboard resources.  
Energy and data volume are examples of these onboard re-
sources. 
 Each activity is examined in priority order, and is either 
placed on the schedule or discarded for this OBP cycle.  Any 
activities that are scheduled to start before the next cycle are 
sent off for execution at their scheduled start times.   
 The scheduling and execution cycle continues until the 
handover time, at which point a new plan file is autono-
mously loaded and started. 

Mandatory vs Optional 
The overall philosophy for constructing plan files is as fol-
lows.  There is a certain subset of the activities that the 
ground fully expects to have executed.  These are called 
mandatory activities.  As the operations team constructs a 
plan file, they are responsible for ensuring that under nomi-
nal circumstances, there are at least enough resources 
onboard to run all mandatory activities.  Several constraints 
do not apply to mandatory activities.  For example, a man-
datory activity is allowed to be scheduled even if it would 
violate the handover limits on energy and data volume.  
Mandatory activities are not aborted if they run past their 
duration.  OBP still has discretion to move around manda-
tory activities so long as their constraints are met.  
 Optional activities are activities that are “nice to have” if 
there are additional resources available to run them onboard.  
OBP must not schedule an optional activity if it would pre-
vent the execution of a mandatory activity.  As OBP sched-
ules optional activities, it must ensure that they do not vio-
late constraints in this plan or constraints at handover.  Op-
tional activities are aborted if they exceed their duration.  

Unique M2020 Aspects 
There are several challenges to scheduling for a Mars rover, 
and for our particular mission as well.  M2020, like MSL, 
has limited energy that must be estimated and managed.  
Both use sleep (shutting down) to use less power and let the 
batteries recharge. Both have a global constraint on the min-
imum state of charge, as well as a constraint on the state of 
charge at handover.  As OBP is generating a schedule, it 
must take these constraints into account.  When OBP sched-
ules an activity, it will attempt to include autonomously gen-
erated awake activities as needed to perform the current can-

didate activity, but without violating energy-related con-
straints. M2020 will have an onboard software energy esti-
mator that integrates various data from hardware to give 
OBP an approximate state of charge for the battery.  This, 
along with the actual durations of executed activities, will 
allow OBP to schedule less sleep and more science when 
energy is available.   
 Recall that comm windows are time periods during which 
the rover communicates with the ground or with an orbiter.  
They are typically fixed in time and cannot be moved.  As 
OBP generates a schedule of activities, it needs to be aware 
of the comm windows, and avoid creating schedules that 
have conflicts between comm windows and other activities. 
 Preheating is another special case for M2020.  A given 
activity may require certain actuators to be at an allowable 
temperature before use.  OBP is required to autonomously 
schedule preheats required for a given activity.   The dura-
tions of the preheats and their associated energy usage de-
pend on the ambient temperature on Mars, which depends 
on the local time of day.  Early morning times on Mars, for 
example, will be colder and require more time to warmup 
the various devices.  Consider an Activity A.  The preheat 
duration depends upon A’s start time.  So, as OBP considers 
scheduling A at different times, the preheat activities shrink 
and grow in duration.  The OBP will use a lookup table to 
determine the required preheat durations for the time at 
which the heating is requested. The OBP will also need to 
manage overlapping or redundant preheats while it creates 
schedules. 

Data Provided from the Ground 
Much of the data OBP needs to generate schedules is pro-
vided from the ground.  This comes in the form of an up-
linked file, which we call the plan file.  At the top level, the 
plan file contains a number of plan-wide constraints and a 
number of activities.  An activity is the item that is sched-
uled. Each activity has a type, as well as set of attributes. 

Plan Attributes and Constraints 
Recall that at handover, we switch from one plan file to the 
next.  We are required to do this switch autonomously if re-
quested, so the plan file contains the handover time, and the 
name of the next plan file to start at handover.  The plan has 
a constraint on the state of battery charge at handover.  This 
expresses the desire to have the OBP make a given amount 
of energy available towards the end of its schedule for use 
by activities in the next plan file.  Additionally, there is a 
constraint on the maximum allowable data volume to collect 
between the start of the plan execution and the handover 
time.  Handover constraints ensure optional activities in the 
current plan don’t consume too many resources potentially 
needed by the subsequent plan. 



Activity Types 
There are several types of activities.   The most common is 
the generic activity.  The generic activity runs a sequence 
and has a fixed duration.   
 The expanding activity has a variable duration.  The min-
imum duration of an expanding activity is specified by the 
ground.  The OBP may grow the duration of an expanding 
activity if more resources are available.  The typical use case 
for an expanding activity is a variable-length drive; the rover 
may drive longer if more energy is available.   
 “Single Selection Groups” are a disjunctive group of ac-
tivities designated in the plan file.  At most one of the activ-
ities in the single selection group is allowed to be scheduled. 
The purpose for this grouping is as follows: If the most re-
source intensive activity in a group does not fit in the sched-
ule, run a less intensive activity instead. 
 Several activities are related to the rover’s sleep cycle.  
Recall that the OBP can autonomously generate CPU 
wakeup and shutdown activities.  The ground can override 
this behavior by inserting “stay awake” activities, which 
prevent autonomous shutdown activities in a given time in-
terval.  Similarly, the ground can force a sleep to occur at a 
given time with a manual sleep activity. 

Activity Attributes and Constraints 
Each activity has a number of attributes that OBP uses to 
estimate the activity’s use of onboard resources.  Each ac-
tivity has a duration.  Each activity can have multiple start 
time ranges.  Associated with each start time range is an ab-
solute cutoff time.   If an activity runs past its cutoff time, it 
will be aborted. 
 The energy consumed by an activity is given as a rate.  To 
obtain the energy consumed by an activity, we multiply the 
energy rate by the activity’s duration.  Similarly, the rate of 
data volume generation is provided as well.   We can multi-
ply this value by the activity duration to get the data volume 
generated by an activity.   
 Additional attributes include the maximum number of se-
quence engines an activity could use, as well as the peak 
power an activity could use.  Activities may also indicate 
that they depend on certain thermal zones being within their 
allowable flight temperatures.  This attribute is an indication 
to the OBP that it must autonomously generate preheating 
and maintenance heating for this activity. 
 Additionally, each activity contains a number of con-
straints that restrict when it can be scheduled.  Each activity 
has a bit array, which we call “resource bits”.  If activities 
have the same resource bit set, they are not permitted to run 
in parallel.  We allow the ground to define the meaning of 
each resource bit for their own purpose.  This gives the 
ground a way to explicitly prevent given activities from run-
ning in parallel.  For example, resource bits could be used to 
prevent a robot arm activity from being scheduled to run in 

parallel with a drive activity, or to prevent two high-CPU 
using activities from being scheduled to run at the same 
time. 
 In addition, the ground can create dependencies between 
activities (see Figure 1).  Flight software knows if an activity 
succeeded or failed.  We call this the activity’s status.  We 
can express that an activity cannot be scheduled unless a 
prior dependent activity has completed with an acceptable 
status.  In the following example, activity B can only be 
scheduled to start after activity A has completed with a sta-
tus indicating success.  We have two options for the depend-
ency constraint, selected with a Boolean “meets” attribute.  
If the “meets” attribute is true, B must be schedule to start at 
A’s end time.  If the “meets” attribute is false, B may be 
scheduled at any time after A’s end time.   
 In addition, the ground can express a constraint on an ac-
tivity that prevents the activity from running based on the 
value of a flight software variable.  This is an area of design 
that we are in the process of maturing. 

Timeline Library 
To support activity scheduling, we have continued devel-
oped on a library for projecting values on timelines that was 
originally prototyped for the Europa flyby mission [Verma 
et al., 2017]. These timelines are used to predict the com-
bined impact of activities on shared states and resources.  
Predicted values at future times are then used to identify po-
tential constraint violations, or conflicts.  With the ability to 
detect conflicts, we can then calculate the valid time inter-
vals that are required to schedule activities. First, we de-
scribe the general types of timelines supported. Then, we 
provide more detail on our methods for computing valid 
start times. Finally, we give examples of timelines being 
used for M2020. 
 For simplicity, all types of timelines are implemented us-
ing the same data structures.  All consist of a dynamic set of 
numeric constraints, impacts, and results.  Timeline impacts 
and constraints are derived from the activity attributes and 
constraints, while results are computed from the impacts. A 
timeline impact is a change in the timeline value at a specific 
time.  This can be an assignment to a value, an incremental 
change to the result value, or an incremental change to the 
rate.  A timeline constraint is a set of minimum and maxi-
mum limits on the result value over a period of time.  A 
timeline result is the value at a specific time, computed from 
the accumulation of impacts prior to and including that time. 

Figure 1: Dependency Constraint 



Figure 2 shows an example generic timeline with four rate 
impacts and two constraints.  The timeline results are shown 
as dots falling under the impacts. 
 All timelines support the following functions: 

• Add/remove impact 
• Add/remove constraint 
• Find constraint violations 
• Find valid start times 

When an impact is added to a timeline, a new result is cre-
ated at that time, and results after it are updated.  When a 
constraint is added, it is stored for use when finding con-
straint violations and valid start times.  Constraint violations 
are found by simply looking for a result with a time that is 
within the constraint time range, but with a value that is not 
within the constraint limits. 
 For calculating valid start times of an activity, we use a 
simple method that involves temporarily adding the activity 
and checking for conflicts.  This is done systematically 
across the timeline, and the conflict check is used to either 
include or exclude a time range from the valid start times.  It 
is important to note that this does not need to be done for 
every possible time, but only where the timeline changes 
(i.e. at each result).   
 While all timelines are implemented the same, certain use 
cases arise that make it beneficial to define types and verify 
the use of each type.  The timeline library supports five types 
similar to those found in [Rabideau et al, 1999, Knight et al., 
2000, Chien et al. 2012]: 

• State 
• Atomic 
• Claimable 
• Cumulative 
• Cumulative rate 

For state timelines, values are integers, and a global con-
straint is used to restrict the values to a discrete set of states.  
All state changers are assignment impacts, and state require-
ments are local constraints.  Atomic timelines are used for 
non-parallel constraints.  Values are integers, and all im-
pacts are provided in pairs: an increase of one at the activity 
start, and a decrease of one at the activity end.  A global 
constraint is used to restrict all timeline values to either one 

or zero, enforcing the non-parallelism.  Claimable timelines 
are similar, but are initialized with a user-specified maxi-
mum limit, and allow activities to “claim” more than one 
value at a time.  This allows for a limited amount of activity 
overlap, depending on the available resource.  Cumulative 
and cumulative rate timelines are the most generic types, al-
lowing incremental changes in either value or rate.  A global 
constraint may be provided, but constraints can be added 
over any time period.  

Mars 2020 Timelines 
Mars 2020 uses the timeline library to represent a specific 
set of rover states and resources.  They are: 

• Activity status 
• Asleep and awake states 
• Number of sequence engines 
• Peak power 
• Battery state-of-charge (SOC) 
• Delta data volume 
• Resource bits 

A state timeline is used to represent the status of each activ-
ity in the plan.  An impact is added at the end of the activity 
to change the state to “SUCCEEDED”.  If another activity 
has a dependency on this state, it will add a constraint to the 
timeline at the start of the activity. 
 Another state timeline is to represent the awake and 
asleep periods for the rover CPU.  Most activities will add 
constraints to this timeline that require the rover to be 
awake.  Special activities will be used to power down the 
CPU when needed to recharge the rover battery.  These will 
add impacts that change the awake state. 
 Each activity uses a sequence, and the number of se-
quence engines on the rover is limited.  A claimable timeline 
is used to represent the number of engines in use.  Each ac-
tivity adds a pair of impacts, incrementing the timeline value 
by one for only the duration of the activity.  A global con-
straint keeps engine use below the maximum. 
 Peak power is also simulated and restricted using a claim-
able timeline.  In this case, timeline values are floating-point 
numbers calculated from the power impacts of the activities. 
 Battery state-of-charge (SOC) is an approximation of the 
amount of energy available in the rover battery, specified as 
a percentage.  Predicted SOC is represented using a cumu-
lative rate timeline.  Each power consumer activity increases 
the rate of discharge by adding a timeline impact at the start, 
and another impact at the end to negate the rate change.  Two 
constraints are added to the SOC timelines: one to enforce a 
minimum SOC, covering the entire planning period; another 
to enforce a different SOC at handover. 
 The data volume (DV) production limit is enforced using 
a global constraint on a cumulative rate timeline that simu-
lates data volume produced by the activities.  Any activity 

Figure 2: Timeline Representation 



that produces data will add a pair of impacts to change the 
DV rate over the time range of the activity. 
 Finally, any non-parallelism indicated with the “resource 
bits” in the activity is enforced with an atomic timeline.  For 
efficiency, we use a single timeline with a special imple-
mentation that employs a bit array, but otherwise behaves 
the same as multiple atomic timelines. 

Algorithm Approach 
As one can see from our flight processor, we have limited 
computing resources both in terms of CPU and RAM.  With 
this in mind, we chose a greedy algorithm for OBP. Each 
activity has a ground-assigned priority associated with it.  
Activities are scheduled in priority order, with all optional 
activities having priority lower than all mandatory activities.  
This ensure an optional activity cannot consume resources 
that may be needed for a mandatory activity. 
 We consciously kept requirements loose to allow a greedy 
algorithm.  There are no requirements to produce an optimal 
schedule or to optimize the schedule in any way.  We are not 
required to schedule a maximal number of activities, nor are 
we required to schedule every mandatory activity.  OBP 
must place activities on the schedule in priority order, and 
must only place it on the schedule if doing so does not vio-
late any constraint.  Given this flexibility, OBP is free to 
place an activity anywhere as long as constraints are not vi-
olated.   
 The greedy algorithm first sorts activities in priority or-
der.  Each activity is examined in that order. A running set 
of valid intervals is initialized with the activity’s valid start 
time ranges. We then examine each timeline.  Using the 
timeline library, we determine the valid start times available 
for an activity on a given timeline.  We repeat this process 
of determining valid intervals for each timeline, intersecting 
the valid intervals as we go.  At the end, we have a final set 
of valid intervals in which the activity can start.  Next, we 
chose the earliest time in the valid interval and place the ac-
tivity on the schedule, solidifying its impacts on all the time-
lines.  In pseudocode, this is approximately: 
 
 For each activity 
  For each timeline 
   Find valid start times 
   Intersect valid start times 
  If a valid start time exists 
   Add activity to plan 
   Add impacts and constraints 
 
If N is the number of activities and T is the number of time-
lines, the worst-case complexity for the overall algorithm is 
O(TN3).  The biggest contributor factor is our simple cal-
culation of valid start times for cumulative timelines.  When 

scheduling the last activity, the timeline could have up to 
2(N-1) results from the N-1 previously placed activities.  
Adding the activity could change 2(N-1) results, at the first 
time, 2(N-2) at the second, etc.  The resulting complexity for 
cumulative timelines is N*(N-1)/2 or O(N2).  The other 
timeline types have impacts that only change results that fall 
under the activity.  For these types, valid start times can be 
computed in linear time.  And because most timelines on 
M2020 are not cumulative, we would expect the average-
case complexity for the full algorithm to be closer to 
Q(TN2).  
 There is no backtracking in a given OBP cycle; once an 
activity is added to the schedule, it does not move.  How-
ever, on the next OBP cycle, scheduling can start from 
scratch.  Any activity that was not dispatched for execution 
can be reevaluated and scheduled at a new location that is 
better suited for the latest spacecraft state. 
 Recall that expanding activities have a minimum dura-
tion, but can expand in duration as onboard resources allow.  
We schedule an expanding activity by doing a binary search 
on its duration. 
 If our initial OBP prototype is not meeting performance 
requirements, we may consider more sophisticated algo-
rithms for computing valid start times [Knight et al., 2000] 
or limited forms of rescheduling.  We may also consider im-
plementing the greedy scheduling algorithm as an anytime 
algorithm, sacrificing only the lowest priority activities 
when time expires. Performance requirements are still in de-
velopment. 

Auto-generating Awake Activities 
Most rover activities will use some power, and most require 
the CPU to be powered-on which also uses power.  Similar 
to MSL, M2020 rover power will be provided by a battery 
that is continuously recharged by a radioisotope thermoelec-
tric generator (RTG).  When the CPU is on, the rover drains 
energy from the battery faster than the RTG can recharge it.  
Putting the rover in a “sleep” mode with the CPU off will 
allow the battery to recharge.  Activities will be scheduled 
as needed to power-up and shutdown the CPU and keep the 
battery state-of-charge (SOC) within the required limits.  In 
this section, we present a rough sketch of the awake/asleep 
scheduling algorithm that will be prototyped in the OBP. 
 We start with the assumption that the CPU will be pow-
ered off until an “awake” activity is scheduled to perform a 
wakeup and shutdown.  During scheduling, this assures us 
that the maximum amount of energy is being preserved for 
activities that have not been scheduled yet.  Then, ignoring 
awake time and SOC constraints, we find the earliest time 
that the next activity can be scheduled.  If an awake activity 
can be added or extended to accommodate the new generic 
activity without violating the SOC limits, the activity is 
scheduled at that time.  Otherwise, we must either find an 



existing awake time, or create a new awake activity along 
with the generic activity being scheduled.  If an existing 
awake time cannot be found, we create a new awake activity 
that is just large enough to accommodate the new generic 
activity.  While considering the energy requirements of both 
activities, we find the valid time intervals with respect to the 
SOC limits.  These intervals are then intersected with the 
valid intervals found for all other constraints on the activity.  
If the resulting set of intervals is empty, the activity is re-
jected.  Otherwise, the activity is scheduled at the earliest 
possible time. 

Scheduling an Activity with Preheats 
We do not model temperature directly as a timeline.  This 
information comes from tables uploaded by the ground.  
These thermal relation tables tell us, given a time of day, 
estimates of temperature, preheat duration, and preheat en-
ergy consumption.   
 Recall that the preheat durations vary with time of day. 
Given a sufficiently small interval of time, however, we are 
guaranteed that the preheat duration is constant.  So, we first 
divide time into smaller intervals under which preheat dura-
tions are constant.  For each of these intervals, we try to find 
valid start ranges. We can then combine each smaller set of 
valid time intervals into one larger one to obtain the set of 
all available start times. 
 Because of their coupling, both the main activity and its 
associated preheats are scheduled together. Queries to the 
timeline library for valid intervals combine constraints and 
impacts from the main activity and all of its preheats.  It is 
as if we combine the preheats and the main activity into one 
big activity that is scheduled all at once.   

Pitfall Cases 
We acknowledge that by choosing a greedy algorithm, there 
are cases where OBP misses an opportunity to schedule ad-
ditional activities.  For example, suppose that we have two 
activities A and B that cannot be scheduled concurrently, 
where activity A is higher priority than B.  And suppose that 
A has no start time constraints, but B is constrained to have 
a start time t = 0.  OBP will greedily schedule A at t = 0, 
then be unable to schedule B. An optimal planner would 
have scheduled both, with A starting after the end of B. 

Flight vs Ground Responsibilities 
Because of the greedy algorithm, in essence some of the al-
gorithmic responsibilities now fall to the ground side.  It is 
the ground that decides the order of activity scheduling, be-
cause the ground decides activity priority.   
 In assigning priority, the ground tools must consider the 
chain of dependencies between activities.  For example, sup-
pose activity B has a dependency constraint, requiring that 
A has completed before B is allowed to run.  OBP must be 

instructed to schedule B after A is scheduled.  Otherwise, B 
would never be scheduled, as its dependency would never 
be met. Given this, the ground is required to assign priorities 
such that the priority of B is less than the priority of A.  One 
approach is to perform a topological sort [Cormen, 2009] of 
the activities and their dependencies as an aid for assigning 
priorities. 
 The team debated whether to perform a topological sort 
onboard or on the ground.  The issue with doing a topologi-
cal sort onboard is that it can conflict with the ground’s in-
tent. By having the ground in complete control over the or-
der of activity evaluation, we allow both topology and 
ground intent to be preserved and stay consistent with each 
other. The ground team is in the process of designing and 
prototyping their ideas for assigning priorities. 

Prototype Tool Chain 
We used a number of tools for use with the OBP prototype.  
As mentioned previously, the primary input used by OBP is 
the plan file.  The plan file is a binary file created on the 
ground and uplinked to the spacecraft.  We currently have 
two options for creating the plan file on the ground (see Fig-
ure 3).  For the most precise control, the developer can create 
an XML file describing every detail of the plan file.  A tool 
we call XML2PLAN converts the XML file into a binary 
plan file. 
 When the time for mission operations comes, we plan to 
have a user-friendly graphical application to assist with 
planning the Martian day. This application, called MSLICE, 
will graphically help the ground team describe activities and 
their relationships at a higher level.  MSLICE also generates 
a binary plan file.  Our prototype is able to ingest plan files 
from either XML2PLAN or MSLICE. 

Figure 4: OBP File Inputs, File Outputs, and Data products 

Figure 3: Plan File Creation 



 Once created, the plan file is then uplinked to the space-
craft (see Figure 4).  A command is sent to the onboard plan-
ner to execute the plan described in the plan file.  The plan-
ner can create files describing a history of its actions as it 
executes.  We call files generated by the spacecraft Data  
Products.  Data products can be downlinked from the space-
craft to the ground.  Once a data product is down, we have 
several data product viewers.  We have viewers that can ei-
ther show the data product graphically or as text.  Data prod-
ucts for the OBP can contain both predicted and actual start 
and end times for activities.   A data product viewer displays 
this data in a Gantt chart style.   We can also create a data 
product containing many internal data structures including 
timelines.  We have a graphical data product viewer tool to 
examine this more detailed debugging data. 

Related Work 
Similar onboard scheduling software has been used on pre-
vious space missions.  In the late 1990s, the first onboard 
planner was demonstrated for 48 hours on the Deep Space 1 
spacecraft [Jónsson et al., 2000]. In the early 2000s, onboard 
planning was a central component in autonomy software 
that was used for 12 years as the primary control of the Earth 
Observing 1 spacecraft [Chien et al., 2005].  Starting in late 
2013, onboard planning was used for one year of autono-
mous operations of the IPEX cubesat mission [Chien et al., 
2016].  
 In addition, numerous systems have been developed that 
demonstrate the benefits of autonomy for Mars rovers using 
Earth-based analogues [Simmons and Apfelbaum, 1998] 
[Pedersen et al., 2003] [Estlin et al., 2007] [Woods et al., 
2013] [Wettergreen et al., 2014].  Ongoing research contin-
ues to look at making future rovers more autonomous and 
more productive [Diaz et al., 2013] [Gaines et al., 2017].   
For M2020, we are not developing a particularly sophisti-
cated planning algorithm, or a new autonomy architecture. 
Instead, we are adding one new component to a heritage 
flight software system to address known productivity issues 
with rover operations, in a manner that is relatively predict-
able to the operators. 
 Mars rovers have seen an increase in autonomous capa-
bilities over the years [Bajracharva et al., 2008].  Onboard 
path planning has been used to support autonomous naviga-
tion [Carsten et al., 2007].  The AEGIS system autono-
mously selects and sequences targeted science activities 
based on image analysis [Estlin et al., 2012].  The OBP is 
being prototyped to provide system-level coordination of 
M2020 rover activities, which would include activities to in-
itiate existing autonomous behaviors. 
 Similar onboard planning capabilities were prototyped as 
the Multi-mission Executive (MEXEC) for the Europa flyby 
mission [Verma et al., 2017].  For Europa, the focus was on 

how these capabilities could be used to reestablish a science 
plan after a flight processor reset induced by the harsh radi-
ation environment near Jupiter.  For M2020, the focus is on 
utilizing opportunities created when resources are used 
more efficiently than conservative estimates.  However, 
both scenarios require basic re-planning capabilities.  In 
fact, much of the code for the M2020 timeline library was 
reused from the MEXEC prototype. 
 Finally, our problem of computing valid start time inter-
vals is similar to the one presented in [Knight et al., 2000].  
Our solution, however, uses a simpler, but more computa-
tionally expensive, test-and-check method.  The overall ap-
proach for the OBP prototype is to start with simple imple-
mentations, evaluate performance, and consider more so-
phisticated algorithms only when required to fit within the 
limited M2020 computing resources. 

Future Work 
There are many areas we need to mature on the road from 
prototyping to the complete M2020 implementation.  We 
are currently working towards a prototype implementation 
of the autonomous awake generation and autonomous pre-
heat generation.   
 Much of this paper has dealt with discussion of the sched-
uling itself.  Generating a schedule is only part of the prob-
lem. The schedule is generated periodically at a lower rate, 
but sequences within the schedule need to be started at the 
appropriate time.  Just before we can start a sequence, we 
need to check its constraints.  This is because the onboard 
state of the constraints may have changed between the time 
the schedule was generated and the time at which we want 
to start the sequence.  Additionally, there is an onboard mon-
itoring aspect that needs to run at a higher rate than the 
scheduler.  We need to check for activities that overrun their 
cutoff time, and abort them.  We expect that the timely con-
straint checks, sequence starts, monitoring and aborting will 
take place in a separate thread running at a higher rate.  We 
have a preliminary design for this, but have not implemented 
it yet in the prototype. 
 Additionally, we have requirements to pause and resume 
activities.  This is an area requiring further design refine-
ment, and we have not yet prototyped this feature. 

Conclusion 
For a rover with limited communication, using conservative 
estimates of resource consumption can provide safe, but of-
ten inefficient operation.  The Mars 2020 mission is proto-
typing one method for regaining efficiency while maintain-
ing safe operations.  We have shown how onboard schedul-
ing software can be used to monitor rover activities, update 
predicted resource availability, and schedule more activities 



when possible.  As with previous rover missions, the M2020 
ground operations team will be able to provide a baseline set 
of conservative activities that are expected to fit. We have 
shown how OBP can enable the team to also provide a set 
of optional activities that keep the rover busy when re-
sources are available. 
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